000 03228nam a22004695i 4500
001 978-3-0348-0351-9
003 DE-He213
005 20140220083253.0
007 cr nn 008mamaa
008 120328s2012 sz | s |||| 0|eng d
020 _a9783034803519
_9978-3-0348-0351-9
024 7 _a10.1007/978-3-0348-0351-9
_2doi
050 4 _aQA241-247.5
072 7 _aPBH
_2bicssc
072 7 _aMAT022000
_2bisacsh
082 0 4 _a512.7
_223
100 1 _aGetz, Jayce.
_eauthor.
245 1 0 _aHilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change
_h[electronic resource] /
_cby Jayce Getz, Mark Goresky.
264 1 _aBasel :
_bSpringer Basel,
_c2012.
300 _aXIII, 256p. 5 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v298
505 0 _aChapter 1. Introduction -- Chapter 2. Review of Chains and Cochains -- Chapter 3. Review of Intersection Homology and Cohomology -- Chapter 4. Review of Arithmetic Quotients -- Chapter 5. Generalities on Hilbert Modular Forms and Varieties -- Chapter 6. Automorphic vector bundles and local systems -- Chapter 7. The automorphic description of intersection cohomology -- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module -- Chapter 9. Explicit construction of cycles -- Chapter 10. The full version of Theorem 1.3 -- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology -- Appendix A. Proof of Proposition 2.4 -- Appendix B. Recollections on Orbifolds -- Appendix C. Basic adèlic facts -- Appendix D. Fourier expansions of Hilbert modular forms -- Appendix E. Review of Prime Degree Base Change for GL2 -- Bibliography.
520 _aIn the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aNumber Theory.
650 2 4 _aAlgebraic Geometry.
700 1 _aGoresky, Mark.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783034803502
830 0 _aProgress in Mathematics ;
_v298
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-0348-0351-9
912 _aZDB-2-SMA
999 _c101730
_d101730