| 000 | 04008nam a22004935i 4500 | ||
|---|---|---|---|
| 001 | 978-3-0348-0260-4 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083253.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 111114s2012 sz | s |||| 0|eng d | ||
| 020 |
_a9783034802604 _9978-3-0348-0260-4 |
||
| 024 | 7 |
_a10.1007/978-3-0348-0260-4 _2doi |
|
| 050 | 4 | _aQA174-183 | |
| 072 | 7 |
_aPBG _2bicssc |
|
| 072 | 7 |
_aMAT002010 _2bisacsh |
|
| 082 | 0 | 4 |
_a512.2 _223 |
| 100 | 1 |
_aBenson, David J. _eauthor. |
|
| 245 | 1 | 0 |
_aRepresentations of Finite Groups: Local Cohomology and Support _h[electronic resource] / _cby David J. Benson, Srikanth Iyengar, Henning Krause. |
| 264 | 1 |
_aBasel : _bSpringer Basel, _c2012. |
|
| 300 |
_aX, 105p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aOberwolfach Seminars ; _v43 |
|
| 505 | 0 | _aPreface -- 1 Monday -- 1.1 Overview -- 1.2 Modules over group algebras -- 1.3 Triangulated categories -- 1.4 Exercises -- 2 Tuesday -- 2.1 Perfect complexes over commutative rings -- 2.2 Brown representability and localization -- 2.3 The stable module category of a finite group -- 2.4 Exercises -- 3 Wednesday -- 3.1 -- 3.2 Koszul objects and support -- 3.3 The homotopy category of injectives -- 3.4 Exercises -- 4 Thursday -- 4.1 Stratifying triangulated categories -- 4.2 Consequences of stratification -- 4.3 The Klein four group -- 4.4 Exercises -- 5 Friday -- 5.1 Localising subcategories of D(A) -- 5.2 Elementary abelian 2-groups -- 5.3 Stratification for arbitrary finite groups -- 5.4 Exercises -- A Support for modules over commutative rings -- Bibliography -- Index. | |
| 520 | _aThe seminar focuses on a recent solution, by the authors, of a long standing problem concerning the stable module category (of not necessarily finite dimensional representations) of a finite group. The proof draws on ideas from commutative algebra, cohomology of groups, and stable homotopy theory. The unifying theme is a notion of support which provides a geometric approach for studying various algebraic structures. The prototype for this has been Daniel Quillen’s description of the algebraic variety corresponding to the cohomology ring of a finite group, based on which Jon Carlson introduced support varieties for modular representations. This has made it possible to apply methods of algebraic geometry to obtain representation theoretic information. Their work has inspired the development of analogous theories in various contexts, notably modules over commutative complete intersection rings and over cocommutative Hopf algebras. One of the threads in this development has been the classification of thick or localizing subcategories of various triangulated categories of representations. This story started with Mike Hopkins’ classification of thick subcategories of the perfect complexes over a commutative Noetherian ring, followed by a classification of localizing subcategories of its full derived category, due to Amnon Neeman. The authors have been developing an approach to address such classification problems, based on a construction of local cohomology functors and support for triangulated categories with ring of operators. The book serves as an introduction to this circle of ideas. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aAlgebra. | |
| 650 | 0 | _aGroup theory. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aGroup Theory and Generalizations. |
| 650 | 2 | 4 | _aCommutative Rings and Algebras. |
| 650 | 2 | 4 | _aAssociative Rings and Algebras. |
| 700 | 1 |
_aIyengar, Srikanth. _eauthor. |
|
| 700 | 1 |
_aKrause, Henning. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783034802598 |
| 830 | 0 |
_aOberwolfach Seminars ; _v43 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-0348-0260-4 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c101723 _d101723 |
||