000 03822nam a22004455i 4500
001 978-1-4614-3713-0
003 DE-He213
005 20140220083248.0
007 cr nn 008mamaa
008 120326s2012 xxu| s |||| 0|eng d
020 _a9781461437130
_9978-1-4614-3713-0
024 7 _a10.1007/978-1-4614-3713-0
_2doi
050 4 _aQA276-280
072 7 _aPBT
_2bicssc
072 7 _aK
_2bicssc
072 7 _aBUS061000
_2bisacsh
082 0 4 _a330.015195
_223
100 1 _aThomopoulos, Nick T.
_eauthor.
245 1 0 _aFundamentals of Queuing Systems
_h[electronic resource] :
_bStatistical Methods for Analyzing Queuing Models /
_cby Nick T. Thomopoulos.
264 1 _aBoston, MA :
_bSpringer US,
_c2012.
300 _aXIII, 170p. 4 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Preliminary Concepts -- One Server, Infinite Queue (M/M/1) -- One Server, Finite Queue (M/M/1/N) -- One Server, No Queue (M/M/1/1) -- Multi Servers, Infinite Queue (M/M/k) -- Multi Servers, Finite Queue (M/M/k/N) -- Multi Servers, No Queue (M/M/k/k) -- One Server, Arbitrary Service (M/G/1) -- 2 Populations, One Server, Arbitrary Service (M/G/1/2) -- M Machines, One Repairman (M/M/1/M) -- M Machines, R Repairmen (M/M/R/M) -- One Server, Repeat Service (M/M/1/q) -- Multi Servers, Repeat Service (M/M/k/θ) -- Tandem Queues (M/M/1 : M/M/1) -- Priority System, One Server, Infinite Queue (M/M/1//P) -- Priority, One Server, Arbitrary Service (M/G/1/P) -- One Server, Constant Service (M/D/1) -- Exponential Arrivals, Erlang Service (M/E2/1) -- Erlang Arrivals, Exponential Service (E2/M/1) -- Erlang Arrivals, Erlang Service (E2/E2/1) -- Waiting Time Density, One Server (M/M/1) -- Waiting Time Density, Multi Servers (M/M/k) -- Bibliography -- Problems -- Solutions.
520 _aWaiting in lines is a staple of everyday human life.  Without really noticing, we are doing it when we go to buy a ticket at a movie theater, stop at a bank to make an account withdrawal, or proceed to checkout a purchase from one of our favorite department stores.  Oftentimes, waiting lines are due to overcrowded, overfilling, or congestion; any time there is more customer demand for a service than can be provided, a waiting line forms.  Queuing systems is a term used to describe the methods and techniques most ideal for measuring the probability and statistics of a wide variety of waiting line models.  This book provides an introduction to basic queuing systems, such as M/M/1 and its variants, as well as newer concepts like systems with priorities, networks of queues, and general service policies.  Numerical examples are presented to guide readers into thinking about practical real-world applications, and students and researchers will be able to apply the methods learned to designing queuing systems that extend beyond the classroom.  Very little has been published in the area of queuing systems, and this volume will appeal to graduate-level students, researchers, and practitioners in the areas of management science, applied mathematics, engineering, computer science, and statistics.   
650 0 _aStatistics.
650 0 _aEconomics
_xStatistics.
650 1 4 _aStatistics.
650 2 4 _aStatistics for Business/Economics/Mathematical Finance/Insurance.
650 2 4 _aOperations Research/Decision Theory.
650 2 4 _aOperations Research, Management Science.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461437123
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-3713-0
912 _aZDB-2-SMA
999 _c101430
_d101430