000 03607nam a22004935i 4500
001 978-1-4614-3455-9
003 DE-He213
005 20140220083247.0
007 cr nn 008mamaa
008 120420s2012 xxu| s |||| 0|eng d
020 _a9781461434559
_9978-1-4614-3455-9
024 7 _a10.1007/978-1-4614-3455-9
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aAgarwal, Ravi P.
_eauthor.
245 1 0 _aNonoscillation Theory of Functional Differential Equations with Applications
_h[electronic resource] /
_cby Ravi P. Agarwal, Leonid Berezansky, Elena Braverman, Alexander Domoshnitsky.
264 1 _aNew York, NY :
_bSpringer New York,
_c2012.
300 _aXV, 520p. 10 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _a1. Introduction to Oscillation Theory -- 2. Scalar Delay Differential Equations on Semiaxes -- 3. Scalar Delay Differential Equations on Semiaxis with Positive and Negative Coefficients -- 4. Oscillation of Equations with a Distributed Delay -- 5. Scalar Advanced and Mixed Differential Equations on Semiaxes -- 6. Neutral Differential Equations -- 7. Second Order Delay Differential Equations -- 8. Second Order Delay Differential Equations with Damping Terms -- 9. Vector Delay Differential Equations -- 10. Linearized Methods for Nonlinear Equations with a Distributed Delay -- 11. Nonlinear Models - Modifications of Delay Logistic Equations -- 12. First Order Linear Delay Impulsive Differential Equation -- 13. Second Order Linear Delay Impulsive Differential Equations -- 14. Linearized Oscillation Theory for Nonlinear Delay Impulsive Equations -- 15. Maximum Principles and Nonoscillation Intervals for First Order Volterra Functional Differential Equations -- 16. Systems of Functional Differential Equations on Finite Intervals -- 17. Nonoscillation Interval for n-th Order Functional Differential Equations -- Appendix A -- Appendix B.
520 _aThis monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types,  equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.      
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aDifferential equations, partial.
650 0 _aFunctions, special.
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aSpecial Functions.
650 2 4 _aFunctional Analysis.
700 1 _aBerezansky, Leonid.
_eauthor.
700 1 _aBraverman, Elena.
_eauthor.
700 1 _aDomoshnitsky, Alexander.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461434542
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-3455-9
912 _aZDB-2-SMA
999 _c101373
_d101373