000 03227nam a22004815i 4500
001 978-1-4614-3119-0
003 DE-He213
005 20140220083246.0
007 cr nn 008mamaa
008 120223s2012 xxu| s |||| 0|eng d
020 _a9781461431190
_9978-1-4614-3119-0
024 7 _a10.1007/978-1-4614-3119-0
_2doi
050 4 _aQA166-166.247
072 7 _aPBV
_2bicssc
072 7 _aMAT013000
_2bisacsh
082 0 4 _a511.5
_223
100 1 _aLi, Xueliang.
_eauthor.
245 1 0 _aRainbow Connections of Graphs
_h[electronic resource] /
_cby Xueliang Li, Yuefang Sun.
264 1 _aBoston, MA :
_bSpringer US,
_c2012.
300 _aVIII, 103p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
505 0 _a1. Introduction (Motivation and definitions, Terminology and notations) -- 2. (Strong) Rainbow connection number(Basic results, Upper bounds for rainbow connection number, For some graph classes, For dense and sparse graphs, For graph operations, An upper bound for strong rainbow connection number) -- 3. Rainbow k-connectivity --  4. k-rainbow index -- 5. Rainbow vertex-connection number -- 6. Algorithms and computational complexity -- References.
520 _aRainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow Connections of Graphs covers this new and emerging topic in graph theory and brings together a majority of the results that deal with the concept of rainbow connections, first introduced by Chartrand et al. in 2006. The authors begin with an introduction to rainbow connectedness, rainbow coloring, and  rainbow connection number. The work is organized into the following categories, computation of the exact values of the rainbow connection numbers for some special graphs, algorithms and complexity analysis, upper bounds in terms of other graph parameters, rainbow connection for dense and sparse graphs, for some graph classes and graph products, rainbow k-connectivity and k-rainbow index, and, rainbow vertex-connection number. Rainbow Connections of Graphs appeals to researchers and graduate students in the field of graph theory. Conjectures, open problems and questions are given throughout the text with the  hope for motivating young graph theorists and graduate students to do further study in this subject.
650 0 _aMathematics.
650 0 _aData structures (Computer science).
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aGraph Theory.
650 2 4 _aData Structures, Cryptology and Information Theory.
650 2 4 _aNumber Theory.
700 1 _aSun, Yuefang.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461431183
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-3119-0
912 _aZDB-2-SMA
999 _c101305
_d101305