000 02958nam a22004695i 4500
001 978-1-4614-1939-6
003 DE-He213
005 20140220083244.0
007 cr nn 008mamaa
008 111215s2012 xxu| s |||| 0|eng d
020 _a9781461419396
_9978-1-4614-1939-6
024 7 _a10.1007/978-1-4614-1939-6
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aBrouwer, Andries E.
_eauthor.
245 1 0 _aSpectra of Graphs
_h[electronic resource] /
_cby Andries E. Brouwer, Willem H. Haemers.
264 1 _aNew York, NY :
_bSpringer New York,
_c2012.
300 _aXIII, 250p. 24 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext,
_x0172-5939
505 0 _aGraph spectrum -- Linear algebra -- Eigenvalues and eigenvectors of graphs -- The second largest eigenvalue -- Trees -- Groups and graphs -- Topology -- Euclidean representations -- Strongly regular graphs -- Regular two-graphs -- Association schemes -- Distance regular graphs. - p-ranks -- Spectral characterizations -- Graphs with few eigenvalues -- References -- Author Index -- Subject Index.
520 _aThis book provides an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. It covers standard topics such as bounds on the sizes of cliques and cocliques, chromatic number and Shannon capacity, the connection between randomness and the 'eigenvalue gap', and applications. It continues with a presentation of some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of  each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text.   Spectra of Graphs is written for researchers, teachers and students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aGroup theory.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aGroup Theory and Generalizations.
700 1 _aHaemers, Willem H.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461419389
830 0 _aUniversitext,
_x0172-5939
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-1939-6
912 _aZDB-2-SMA
999 _c101164
_d101164