| 000 | 02862nam a22004695i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4614-1897-9 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083244.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 111117s2012 xxu| s |||| 0|eng d | ||
| 020 |
_a9781461418979 _9978-1-4614-1897-9 |
||
| 024 | 7 |
_a10.1007/978-1-4614-1897-9 _2doi |
|
| 050 | 4 | _aQA402.5-402.6 | |
| 072 | 7 |
_aPBU _2bicssc |
|
| 072 | 7 |
_aMAT003000 _2bisacsh |
|
| 082 | 0 | 4 |
_a519.6 _223 |
| 100 | 1 |
_aShikhman, Vladimir. _eauthor. |
|
| 245 | 1 | 0 |
_aTopological Aspects of Nonsmooth Optimization _h[electronic resource] / _cby Vladimir Shikhman. |
| 264 | 1 |
_aNew York, NY : _bSpringer New York, _c2012. |
|
| 300 |
_aXII, 196 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aSpringer Optimization and Its Applications, _x1931-6828 ; _v64 |
|
| 505 | 0 | _aPreface. -Notation -- Introduction -- Mathematical Programming Problems with Complementarity -- Constraints -- General Semi-infinite Programming Problems -- Mathematical Programming Problems with Vanishing Constraints -- Bilevel Optimization -- Impacts on Nonsmooth Analysis -- Appendix -- Bibliography -- References -- Index. | |
| 520 | _aThis book deals with nonsmooth structures arising within the optimization setting. It considers four optimization problems, namely, mathematical programs with complementarity constraints, general semi-infinite programming problems, mathematical programs with vanishing constraints and bilevel optimization. The author uses the topological approach and topological invariants of corresponding feasible sets are investigated. Moreover, the critical point theory in the sense of Morse is presented and parametric and stability issues are considered. The material progresses systematically and establishes a comprehensive theory for a rather broad class of optimization problems tailored to their particular type of nonsmoothness. Topological Aspects of Nonsmooth Optimization will benefit researchers and graduate students in applied mathematics, especially those working in optimization theory, nonsmooth analysis, algebraic topology and singularity theory. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aFunctional analysis. | |
| 650 | 0 | _aMathematical optimization. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aOptimization. |
| 650 | 2 | 4 | _aContinuous Optimization. |
| 650 | 2 | 4 | _aFunctional Analysis. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781461418962 |
| 830 | 0 |
_aSpringer Optimization and Its Applications, _x1931-6828 ; _v64 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4614-1897-9 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c101154 _d101154 |
||