000 03349nam a22004815i 4500
001 978-1-4614-1809-2
003 DE-He213
005 20140220083243.0
007 cr nn 008mamaa
008 120214s2012 xxu| s |||| 0|eng d
020 _a9781461418092
_9978-1-4614-1809-2
024 7 _a10.1007/978-1-4614-1809-2
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aArapura, Donu.
_eauthor.
245 1 0 _aAlgebraic Geometry over the Complex Numbers
_h[electronic resource] /
_cby Donu Arapura.
264 1 _aBoston, MA :
_bSpringer US,
_c2012.
300 _aXII, 329p. 17 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext,
_x0172-5939
505 0 _aPreface -- 1. Plane Curves -- 2. Manifolds and Varieties via Sheaves -- 3. More Sheaf Theory -- 4. Sheaf Cohomology -- 5. de Rham Cohomoloy of Manifolds -- 6. Riemann Surfaces -- 7. Simplicial Methods -- 8. The Hodge Theorem for Riemann Manifolds -- 9. Toward Hodge Theory for Complex Manifolds -- 10. Kahler Manifolds -- 11. A Little Algebraic Surface Theory -- 12. Hodge Structures and Homological Methods -- 13. Topology of Families -- 14. The Hard Lefschez Theorem -- 15. Coherent Sheaves -- 16. Computation of Coherent Sheaves -- 17. Computation of some Hodge numbers -- 18. Deformation Invariance of Hodge Numbers -- 19. Analogies and Conjectures.- References -- Index.
520 _aThis textbook is a strong addition to existing introductory literature on algebraic geometry. The author’s treatment combines the study of algebraic geometry with differential and complex geometry and unifies these subjects using sheaf-theoretic ideas. It is also an ideal text for showing students the connections between algebraic geometry, complex geometry, and topology, and brings the reader close to the forefront of research in Hodge theory and related fields. Unique features of this textbook: - Contains a rapid introduction to complex algebraic geometry - Includes background material on topology, manifold theory and sheaf theory - Analytic and algebraic approaches are developed somewhat in parallel The presentation is easy going, elementary, and well illustrated with examples. “Algebraic Geometry over the Complex Numbers” is intended for graduate level courses in algebraic geometry and related fields. It can be used as a main text for a second semester graduate course in algebraic geometry with emphasis on sheaf theoretical methods or a more advanced graduate course on algebraic geometry and Hodge Theory.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aDifferential equations, partial.
650 0 _aTopology.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aSeveral Complex Variables and Analytic Spaces.
650 2 4 _aTopology.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461418085
830 0 _aUniversitext,
_x0172-5939
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-1809-2
912 _aZDB-2-SMA
999 _c101136
_d101136