000 02206nam a22004815i 4500
001 978-1-4471-4435-9
003 DE-He213
005 20140220083237.0
007 cr nn 008mamaa
008 120828s2012 xxk| s |||| 0|eng d
020 _a9781447144359
_9978-1-4471-4435-9
024 7 _a10.1007/978-1-4471-4435-9
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
082 0 4 _a510
_223
100 1 _aDeitmar, Anton.
_eauthor.
245 1 0 _aAutomorphic Forms
_h[electronic resource] /
_cby Anton Deitmar.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2012.
300 _aIX, 252 p. 2 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext,
_x0172-5939
520 _aAutomorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aGroup theory.
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aMathematics, general.
650 2 4 _aNumber Theory.
650 2 4 _aGroup Theory and Generalizations.
650 2 4 _aAlgebra.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781447144342
830 0 _aUniversitext,
_x0172-5939
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4471-4435-9
912 _aZDB-2-SMA
999 _c100788
_d100788