000 03947nam a22005055i 4500
001 978-1-4471-2333-0
003 DE-He213
005 20140220083235.0
007 cr nn 008mamaa
008 120303s2012 xxk| s |||| 0|eng d
020 _a9781447123330
_9978-1-4471-2333-0
024 7 _a10.1007/978-1-4471-2333-0
_2doi
050 4 _aTJ212-225
072 7 _aTJFM
_2bicssc
072 7 _aTEC004000
_2bisacsh
082 0 4 _a629.8
_223
100 1 _aTakács, Gergely.
_eauthor.
245 1 0 _aModel Predictive Vibration Control
_h[electronic resource] :
_bEfficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures /
_cby Gergely Takács, Boris Rohaľ-Ilkiv.
264 1 _aLondon :
_bSpringer London,
_c2012.
300 _aXXXVII, 515p. 170 illus., 4 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _a1. Introduction -- 2. Basics of Vibration Dynamics -- 3. Smart Materials in Active Vibration Control -- 4. Algorithms in Active Vibration Control -- 5. Laboratory Demonstration Hardware for AVC -- 6. Basic MPC Formulation -- 7. Stability and Feasibility of MPC -- 8. Efficient MPC Algorithms -- 9. Applications of Model Predictive Vibration Control -- 10. MPC Implementation for Vibration Control -- 11. Simulation Study of Model Predictive Vibration Control -- 12. Experimental Model Predictive Vibration Control -- A. FE Modeling of the Active Structure -- B. MPC Code Implementation Details.
520 _aReal-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of computationally efficient algorithms ·         control strategies in simulation and experiment and ·         typical hardware requirements for piezoceramics actuated smart structures.   The use of a simple laboratory model and inclusion of over 170  illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation. 
650 0 _aEngineering.
650 0 _aSystems theory.
650 0 _aComputer science
_xMathematics.
650 0 _aVibration.
650 1 4 _aEngineering.
650 2 4 _aControl.
650 2 4 _aMathematical Modeling and Industrial Mathematics.
650 2 4 _aVibration, Dynamical Systems, Control.
650 2 4 _aComputational Intelligence.
650 2 4 _aComputational Mathematics and Numerical Analysis.
650 2 4 _aSystems Theory, Control.
700 1 _aRohaľ-Ilkiv, Boris.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781447123323
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4471-2333-0
912 _aZDB-2-ENG
999 _c100653
_d100653