| 000 | 03114nam a22004455i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4419-9560-5 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083234.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 120319s2012 xxu| s |||| 0|eng d | ||
| 020 |
_a9781441995605 _9978-1-4419-9560-5 |
||
| 024 | 7 |
_a10.1007/978-1-4419-9560-5 _2doi |
|
| 050 | 4 | _aQ342 | |
| 072 | 7 |
_aUYQ _2bicssc |
|
| 072 | 7 |
_aCOM004000 _2bisacsh |
|
| 082 | 0 | 4 |
_a006.3 _223 |
| 100 | 1 |
_aWang, Shuming. _eauthor. |
|
| 245 | 1 | 0 |
_aFuzzy Stochastic Optimization _h[electronic resource] : _bTheory, Models and Applications / _cby Shuming Wang, Junzo Watada. |
| 264 | 1 |
_aBoston, MA : _bSpringer US, _c2012. |
|
| 300 |
_aXVI, 250 p. 64 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aPart I: Theory -- Fuzzy Random Variable -- Fuzzy Stochastic Renewal Processes -- Part II: Models -- System Reliability Optimization Models with Fuzzy Random Lifetimes -- Recourse-Based Fuzzy Random Facility Location Model with Fixed Capacity -- Two-Stage Fuzzy Stochastic Programming with Value-at-Risk: A Generic Model -- VaR-Based Fuzzy Random Facility Location Model with Variable Capacity -- Part III: Real-Life Applications. | |
| 520 | _aCovering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins by outlining the history and development of the fuzzy random variable before detailing numerous optimization models and applications that include the design of system controls for a dam. | ||
| 650 | 0 | _aEngineering. | |
| 650 | 0 | _aMathematical optimization. | |
| 650 | 1 | 4 | _aEngineering. |
| 650 | 2 | 4 | _aComputational Intelligence. |
| 650 | 2 | 4 | _aOptimization. |
| 650 | 2 | 4 | _aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. |
| 700 | 1 |
_aWatada, Junzo. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781441995599 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4419-9560-5 |
| 912 | _aZDB-2-ENG | ||
| 999 |
_c100585 _d100585 |
||