000 03962nam a22004935i 4500
001 978-1-4419-8074-8
003 DE-He213
005 20140220083233.0
007 cr nn 008mamaa
008 111117s2012 xxu| s |||| 0|eng d
020 _a9781441980748
_9978-1-4419-8074-8
024 7 _a10.1007/978-1-4419-8074-8
_2doi
050 4 _aTA357-359
072 7 _aTGMF
_2bicssc
072 7 _aTGMF1
_2bicssc
072 7 _aTEC009070
_2bisacsh
072 7 _aSCI085000
_2bisacsh
082 0 4 _a620.1064
_223
100 1 _aLevenspiel, Octave.
_eauthor.
245 1 0 _aTracer Technology
_h[electronic resource] :
_bModeling the Flow of Fluids /
_cby Octave Levenspiel.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2012.
300 _aXII, 148 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aFluid Mechanics and Its Applications,
_x0926-5112 ;
_v96
505 0 _aThe Tracer Method -- The Mean and Variance of a Tracer Curve -- The E and the F Curves -- Two Ideal Flow Models - Plug Flow and Mixed Flow -- Compartment Models -- The Dispersion Model -- Intermixing Between Flowing Fluids -- The Tanks-in-Series Model -- Convection Model for Laminar Flow in Pipes -- Batch Systems -- The Stirred Tank - Mixing Time and Power Requirement -- Meandering Flow and Lateral Dispersion.
520 _aA vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the bloodstreams of humans and animals.   Tracer Technology – Modeling the Flow of Fluids discusses how tracers are used to follow the flow of fluids, and how a variety of models are developed to represent these flows.   Octave Levenspiel is Professor Emeritus of Chemical Engineering at Oregon State University.  His primary interest is chemical reaction engineering, focusing largely on applying chemical reaction kinetics and physics to the design of chemical reactors.  His work has been recognized with awards that include the R.H. Wilhelm award (AIChE), the W.K. Lewis award (AIChE), and the P.V. Danckwerts award (IChemE).  His previous books, including Chemical Reaction Engineering, The Chemical Reactor Omnibook, and Engineering Flow and Heat Exchange, are widely used in industry and teaching, and have been translated into 12 foreign languages.
650 0 _aEngineering.
650 0 _aChemical engineering.
650 0 _aHydraulic engineering.
650 1 4 _aEngineering.
650 2 4 _aEngineering Fluid Dynamics.
650 2 4 _aIndustrial Chemistry/Chemical Engineering.
650 2 4 _aFluid- and Aerodynamics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441980731
830 0 _aFluid Mechanics and Its Applications,
_x0926-5112 ;
_v96
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4419-8074-8
912 _aZDB-2-PHA
999 _c100551
_d100551