000 04609nam a22005655i 4500
001 978-0-8176-8340-5
003 DE-He213
005 20140220083228.0
007 cr nn 008mamaa
008 120523s2012 xxu| s |||| 0|eng d
020 _a9780817683405
_9978-0-8176-8340-5
024 7 _a10.1007/978-0-8176-8340-5
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aArnold, V.I.
_eauthor.
245 1 0 _aSingularities of Differentiable Maps, Volume 1
_h[electronic resource] :
_bClassification of Critical Points, Caustics and Wave Fronts /
_cby V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _aXII, 282 p. 67 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aModern Birkhäuser Classics
505 0 _aPart I. Basic concepts -- The simplest examples -- The classes Sigma^ I -- The quadratic differential of a map -- The local algebra of a map and the Weierstrass preparation theorem -- The local multiplicity of a holomorphic map -- Stability and infinitesimal stability -- The proof of the stability theorem -- Versal deformations -- The classification of stable germs by genotype -- Review of further results -- Part II. Critical points of smooth functions -- A start to the classification of critical points -- Quasihomogeneous and semiquasihomogeneous singularities -- The classification of quasihomogeneous functions -- Spectral sequences for the reduction to normal forms -- Lists of singularities -- The determinator of singularities -- Real, symmetric and boundary singularities -- Part III. Singularities of caustics and wave fronts -- Lagrangian singularities -- Generating families -- Legendrian singularities -- The classification of Lagrangian and Legendrian singularities -- The bifurcation of caustics and wave fronts -- References -- Further references -- Subject Index.
520 _aOriginally published in the 1980s, Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts was the first of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory.  This uncorrected softcover reprint of the work brings its still-relevant content back into the literature, making it available—and affordable—to a global audience of researchers and practitioners. Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science.  The three parts of this first volume deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities.  Building on these concepts, the second volume (Monodromy and Asymptotics of Integrals) describes the topological and algebro-geometrical aspects of the theory, including monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts accommodates the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level.  With this foundation, the book's sophisticated development permits readers to explore an unparalleled breadth of applications.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aTopological Groups.
650 0 _aGlobal analysis (Mathematics).
650 0 _aGlobal differential geometry.
650 0 _aCell aggregation
_xMathematics.
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aDifferential Geometry.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
650 2 4 _aApplications of Mathematics.
700 1 _aGusein-Zade, S.M.
_eauthor.
700 1 _aVarchenko, A.N.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817683399
830 0 _aModern Birkhäuser Classics
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-8340-5
912 _aZDB-2-SMA
999 _c100249
_d100249