| 000 | 03685nam a22005535i 4500 | ||
|---|---|---|---|
| 001 | 978-0-8176-8334-4 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083228.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 120707s2012 xxu| s |||| 0|eng d | ||
| 020 |
_a9780817683344 _9978-0-8176-8334-4 |
||
| 024 | 7 |
_a10.1007/978-0-8176-8334-4 _2doi |
|
| 050 | 4 | _aQA241-247.5 | |
| 072 | 7 |
_aPBH _2bicssc |
|
| 072 | 7 |
_aMAT022000 _2bisacsh |
|
| 082 | 0 | 4 |
_a512.7 _223 |
| 100 | 1 |
_aBump, Daniel. _eeditor. |
|
| 245 | 1 | 0 |
_aMultiple Dirichlet Series, L-functions and Automorphic Forms _h[electronic resource] / _cedited by Daniel Bump, Solomon Friedberg, Dorian Goldfeld. |
| 264 | 1 |
_aBoston, MA : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2012. |
|
| 300 |
_aVIII, 361 p. 78 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aProgress in Mathematics ; _v300 |
|
| 505 | 0 | _aPreface -- Introduction: Multiple Dirichlet Series -- A Crystal Description for Symplectic Multiple Dirichlet Series -- Metaplectic Whittaker Functions and Crystals of Type B -- Metaplectic Ice -- Littelmann patterns and Weyl Group Multiple Dirichlet Series of Type D -- Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series -- Natural Boundaries and Integral Moments of L-functions.- A Trace Formula of Special Values of Automorphic L-functions -- The Adjoint L-function of SU(2,1) -- Symplectic Ice -- On Witten Multiple Zeta-Functions Associated with Semisimple Lie Algebras III -- A Pseudo Twin-Prime Theorem -- Principal Series Representations of Metaplectic Groups over Local Fields -- Two-Dimensional Adelic Analysis and Cuspidal Automorphic Representations of GL(2). | |
| 520 | _aMultiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGroup theory. | |
| 650 | 0 | _aFunctions, special. | |
| 650 | 0 | _aCombinatorics. | |
| 650 | 0 | _aNumber theory. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aNumber Theory. |
| 650 | 2 | 4 | _aGroup Theory and Generalizations. |
| 650 | 2 | 4 | _aMathematical Physics. |
| 650 | 2 | 4 | _aCombinatorics. |
| 650 | 2 | 4 | _aSpecial Functions. |
| 650 | 2 | 4 | _aQuantum Field Theories, String Theory. |
| 700 | 1 |
_aFriedberg, Solomon. _eeditor. |
|
| 700 | 1 |
_aGoldfeld, Dorian. _eeditor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9780817683337 |
| 830 | 0 |
_aProgress in Mathematics ; _v300 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-0-8176-8334-4 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c100247 _d100247 |
||