| 000 | 02705nam a22004695i 4500 | ||
|---|---|---|---|
| 001 | 978-0-387-79020-6 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083227.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 120105s2012 xxu| s |||| 0|eng d | ||
| 020 |
_a9780387790206 _9978-0-387-79020-6 |
||
| 024 | 7 |
_a10.1007/978-0-387-79020-6 _2doi |
|
| 050 | 4 | _aRC321-580 | |
| 072 | 7 |
_aPSAN _2bicssc |
|
| 072 | 7 |
_aMED057000 _2bisacsh |
|
| 082 | 0 | 4 |
_a612.8 _223 |
| 100 | 1 |
_aDestexhe, Alain. _eauthor. |
|
| 245 | 1 | 0 |
_aNeuronal Noise _h[electronic resource] / _cby Alain Destexhe, Michelle Rudolph-Lilith. |
| 264 | 1 |
_aBoston, MA : _bSpringer US, _c2012. |
|
| 300 |
_aXVIII, 458p. 203 illus., 1 illus. in color. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aSpringer Series in Computational Neuroscience ; _v8 |
|
| 505 | 0 | _a1 Introduction -- 2 Basics -- 3 Synaptic noise -- 4 Models of synaptic noise -- 5 Integrative properties in the presence of noise6 Recreating synaptic noise using dynamic-clamp -- 7 The mathematics of synaptic noise -- 8 Analyzing synaptic noise -- 9 Case studies -- 10 Conclusions and perspectives A Numerical integration of stochastic differential equations -- B Distributed Generator Algorithm -- C The Fokker-Planck formalism -- D The RT-NEURON interface for dynamic-clamp -- References -- Index. | |
| 520 | _aNeuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations. The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons. | ||
| 650 | 0 | _aMedicine. | |
| 650 | 0 | _aNeurosciences. | |
| 650 | 0 | _aNeurobiology. | |
| 650 | 1 | 4 | _aBiomedicine. |
| 650 | 2 | 4 | _aNeurosciences. |
| 650 | 2 | 4 | _aNeurobiology. |
| 700 | 1 |
_aRudolph-Lilith, Michelle. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9780387790190 |
| 830 | 0 |
_aSpringer Series in Computational Neuroscience ; _v8 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-0-387-79020-6 |
| 912 | _aZDB-2-SBL | ||
| 999 |
_c100198 _d100198 |
||