Normal view MARC view ISBD view

Poisson Structures [electronic resource] / by Camille Laurent-Gengoux, Anne Pichereau, Pol Vanhaecke.

By: Laurent-Gengoux, Camille [author.].
Contributor(s): Pichereau, Anne [author.] | Vanhaecke, Pol [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics: 347Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XXIV, 461 p. 16 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642310904.Subject(s): Mathematics | Algebra | Topological Groups | Global analysis (Mathematics) | Global differential geometry | Mathematics | Analysis | Differential Geometry | Topological Groups, Lie Groups | Non-associative Rings and AlgebrasDDC classification: 515 Online resources: Click here to access online
Contents:
Part I Theoretical Background:1.Poisson Structures: Basic Definitions -- 2.Poisson Structures: Basic Constructions -- 3.Multi-Derivations and Kähler Forms -- 4.Poisson (Co)Homology -- 5.Reduction -- Part II Examples:6.Constant Poisson Structures, Regular and Symplectic Manifolds -- 7.Linear Poisson Structures and Lie Algebras -- 8.Higher Degree Poisson Structures -- 9.Poisson Structures in Dimensions Two and Three -- 10.R-Brackets and r-Brackets -- 11.Poisson–Lie Groups -- Part III Applications:12.Liouville Integrable Systems -- 13.Deformation Quantization -- A Multilinear Algebra -- B Real and Complex Differential Geometry -- References -- Index -- List of Notations.  .
In: Springer eBooksSummary: Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Part I Theoretical Background:1.Poisson Structures: Basic Definitions -- 2.Poisson Structures: Basic Constructions -- 3.Multi-Derivations and Kähler Forms -- 4.Poisson (Co)Homology -- 5.Reduction -- Part II Examples:6.Constant Poisson Structures, Regular and Symplectic Manifolds -- 7.Linear Poisson Structures and Lie Algebras -- 8.Higher Degree Poisson Structures -- 9.Poisson Structures in Dimensions Two and Three -- 10.R-Brackets and r-Brackets -- 11.Poisson–Lie Groups -- Part III Applications:12.Liouville Integrable Systems -- 13.Deformation Quantization -- A Multilinear Algebra -- B Real and Complex Differential Geometry -- References -- Index -- List of Notations.  .

Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue