Normal view MARC view ISBD view

An Introduction to Complex Analysis [electronic resource] / by Ravi P. Agarwal, Kanishka Perera, Sandra Pinelas.

By: Agarwal, Ravi P [author.].
Contributor(s): Perera, Kanishka [author.] | Pinelas, Sandra [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Boston, MA : Springer US, 2011Edition: 1.Description: XIV, 331p. 94 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781461401957.Subject(s): Mathematics | Global analysis (Mathematics) | Functions of complex variables | Mathematics | Functions of a Complex Variable | AnalysisDDC classification: 515.9 Online resources: Click here to access online
Contents:
Preface.-Complex Numbers.-Complex Numbers II -- Complex Numbers III.-Set Theory in the Complex Plane.-Complex Functions.-Analytic Functions I.-Analytic Functions II.-Elementary Functions I -- Elementary Functions II -- Mappings by Functions -- Mappings by Functions II -- Curves, Contours, and Simply Connected Domains -- Complex Integration -- Independence of Path -- Cauchy–Goursat Theorem -- Deformation Theorem -- Cauchy’s Integral Formula -- Cauchy’s Integral Formula for Derivatives -- Fundamental Theorem of Algebra -- Maximum Modulus Principle -- Sequences and Series of Numbers -- Sequences and Series of Functions -- Power Series -- Taylor’s Series -- Laurent’s Series -- Zeros of Analytic Functions -- Analytic Continuation -- Symmetry and Reflection -- Singularities and Poles I -- Singularities and Poles II -- Cauchy’s Residue Theorem -- Evaluation of Real Integrals by Contour Integration I -- Evaluation of Real Integrals by Contour Integration II -- Indented Contour Integrals -- Contour Integrals Involving Multi–valued Functions -- Summation of Series. Argument Principle and Rouch´e and Hurwitz Theorems -- Behavior of Analytic Mappings -- Conformal Mappings -- Harmonic Functions -- The Schwarz–Christoffel Transformation -- Infinite Products -- Weierstrass’s Factorization Theorem -- Mittag–Leffler’s Theorem -- Periodic Functions -- The Riemann Zeta Function -- Bieberbach’s Conjecture -- The Riemann Surface -- Julia and Mandelbrot Sets -- History of Complex Numbers -- References for Further Reading -- Index.
In: Springer eBooksSummary: This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner.   Key features of this textbook: -Effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures - Uses detailed examples to drive the presentation -Includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section -covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics -Provides a concise history of complex numbers     An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Preface.-Complex Numbers.-Complex Numbers II -- Complex Numbers III.-Set Theory in the Complex Plane.-Complex Functions.-Analytic Functions I.-Analytic Functions II.-Elementary Functions I -- Elementary Functions II -- Mappings by Functions -- Mappings by Functions II -- Curves, Contours, and Simply Connected Domains -- Complex Integration -- Independence of Path -- Cauchy–Goursat Theorem -- Deformation Theorem -- Cauchy’s Integral Formula -- Cauchy’s Integral Formula for Derivatives -- Fundamental Theorem of Algebra -- Maximum Modulus Principle -- Sequences and Series of Numbers -- Sequences and Series of Functions -- Power Series -- Taylor’s Series -- Laurent’s Series -- Zeros of Analytic Functions -- Analytic Continuation -- Symmetry and Reflection -- Singularities and Poles I -- Singularities and Poles II -- Cauchy’s Residue Theorem -- Evaluation of Real Integrals by Contour Integration I -- Evaluation of Real Integrals by Contour Integration II -- Indented Contour Integrals -- Contour Integrals Involving Multi–valued Functions -- Summation of Series. Argument Principle and Rouch´e and Hurwitz Theorems -- Behavior of Analytic Mappings -- Conformal Mappings -- Harmonic Functions -- The Schwarz–Christoffel Transformation -- Infinite Products -- Weierstrass’s Factorization Theorem -- Mittag–Leffler’s Theorem -- Periodic Functions -- The Riemann Zeta Function -- Bieberbach’s Conjecture -- The Riemann Surface -- Julia and Mandelbrot Sets -- History of Complex Numbers -- References for Further Reading -- Index.

This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner.   Key features of this textbook: -Effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures - Uses detailed examples to drive the presentation -Includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section -covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics -Provides a concise history of complex numbers     An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue