Normal view MARC view ISBD view

Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R [electronic resource] : Order-Restricted Analysis of Microarray Data / edited by Dan Lin, Ziv Shkedy, Daniel Yekutieli, Dhammika Amaratunga, Luc Bijnens.

By: Lin, Dan [editor.].
Contributor(s): Shkedy, Ziv [editor.] | Yekutieli, Daniel [editor.] | Amaratunga, Dhammika [editor.] | Bijnens, Luc [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Use R!: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Description: XV, 282 p. 96 illus., 4 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642240072.Subject(s): Statistics | Pharmaceutical technology | Bioinformatics | Statistical methods | Biology -- Data processing | Mathematical statistics | Statistics | Statistics, general | Statistics and Computing/Statistics Programs | Pharmaceutical Sciences/Technology | Biostatistics | Bioinformatics | Computer Appl. in Life SciencesDDC classification: 519.5 Online resources: Click here to access online
Contents:
Introduction -- Part I: Dose-response Modeling: An Introduction -- Estimation Under Order Restrictions -- The Likelihood Ratio Test -- Part II: Dose-response Microarray Experiments -- Functional Genomic Dose-response Experiments -- Adjustment for Multiplicity -- Test for Trend -- Order Restricted Bisclusters -- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods -- Multiple Contrast Test -- Confidence Intervals for the Selected Parameters -- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics.
In: Springer eBooksSummary: This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students. Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as the likelihood ratio test and non-linear parametric models, which are used in the second part of the book.  Part II is the core of the book. Methodological topics discussed include: ·         Multiplicity adjustment ·         Test statistics and testing procedures for the analysis of dose-response microarray data ·         Resampling-based inference and use of the SAM method at the presence of small-variance genes in the data ·         Identification and classification of dose-response curve shapes ·         Clustering of order restricted (but not necessarily monotone) dose-response profiles ·         Hierarchical Bayesian models and non-linear models for dose-response microarray data ·         Multiple contrast tests All methodological issues in the book are illustrated using four “real-world” examples of dose-response microarray datasets from early drug development experiments.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introduction -- Part I: Dose-response Modeling: An Introduction -- Estimation Under Order Restrictions -- The Likelihood Ratio Test -- Part II: Dose-response Microarray Experiments -- Functional Genomic Dose-response Experiments -- Adjustment for Multiplicity -- Test for Trend -- Order Restricted Bisclusters -- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods -- Multiple Contrast Test -- Confidence Intervals for the Selected Parameters -- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics.

This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students. Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as the likelihood ratio test and non-linear parametric models, which are used in the second part of the book.  Part II is the core of the book. Methodological topics discussed include: ·         Multiplicity adjustment ·         Test statistics and testing procedures for the analysis of dose-response microarray data ·         Resampling-based inference and use of the SAM method at the presence of small-variance genes in the data ·         Identification and classification of dose-response curve shapes ·         Clustering of order restricted (but not necessarily monotone) dose-response profiles ·         Hierarchical Bayesian models and non-linear models for dose-response microarray data ·         Multiple contrast tests All methodological issues in the book are illustrated using four “real-world” examples of dose-response microarray datasets from early drug development experiments.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue