Modeling in Computational Biology and Biomedicine (Record no. 97075)

000 -LEADER
fixed length control field 06376nam a22004575i 4500
001 - CONTROL NUMBER
control field 978-3-642-31208-3
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20140220082849.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 121116s2013 gw | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783642312083
-- 978-3-642-31208-3
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-3-642-31208-3
Source of number or code doi
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QH323.5
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QH324.2-324.25
072 #7 - SUBJECT CATEGORY CODE
Subject category code PDE
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT003000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 570.285
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Cazals, Frédéric.
Relator term editor.
245 10 - TITLE STATEMENT
Title Modeling in Computational Biology and Biomedicine
Medium [electronic resource] :
Remainder of title A Multidisciplinary Endeavor /
Statement of responsibility, etc edited by Frédéric Cazals, Pierre Kornprobst.
264 #1 -
-- Berlin, Heidelberg :
-- Springer Berlin Heidelberg :
-- Imprint: Springer,
-- 2013.
300 ## - PHYSICAL DESCRIPTION
Extent XXVI, 315 p. 85 illus., 65 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Foreword by Olivier Faugeras -- Foreword by Joël Janin -- Preface -- Part I Bioinformatics -- 1.Modeling Macro-molecular Complexes: a Journey Across Scales. F.Cazals, T.Dreyfus, and C.H. Robert -- 1.1.Introduction -- 1.2.Modeling Atomic Resolution -- 1.3.Modeling Large Assemblies -- 1.4.Outlook -- 1.5.Online Resources -- References -- 2.Modeling and Analysis of Gene Regulatory Networks. G.Bernot, J-P.Comet, A.Richard, M.Chaves, J-L.Gouzé, and F.Dayan -- 2.1.Introduction -- 2.2.Continuous and Hybrid Models of Genetic Regulatory Networks -- 2.3.Discrete Models of GRN -- 2.4.Outlook -- 2.5.Online Resources -- 2.6.Acknowledgments -- References -- Part II Biomedical Signal and Image Analysis -- 3.Noninvasive Cardiac Signal Analysis Using Data Decomposition Techniques. V.Zarzoso, O.Meste, P.Comon, D.G.Latcu, and N.Saoudi -- 3.1.Preliminaries and Motivation -- 3.2.T-Wave Alternans Detection via Principal Component Analysis -- 3.3.Atrial Activity Extraction via Independent Component Analysis -- 3.4.Conclusion and Outlook -- 3.5.Online Resources -- References -- 4.Deconvolution and Denoising for Confocal Microscopy. P.Pankajakshan, G.Engler, L.Blanc-Féraud, and J.Zerubia -- 4.1.Introduction -- 4.2.Development of the Auxiliary Computational Lens -- 4.3.Outlook -- 4.4.Selected Online Resources -- References -- 5.Statistical Shape Analysis of Surfaces in Medical Images Applied to the Tetralogy of Fallot Heart. K.McLeod, T.Mansi, M.Sermesant, G.Pongiglione, and X.Pennec -- 5.1.Introduction -- 5.2.Statistical Shape Analysis -- 5.3.Shape Analysis of ToF Data -- 5.4.Conclusion -- 5.5.Online Resources -- References -- 6.From Diffusion MRI to Brain Connectomics. A.Ghosh and R.Deriche -- 6.1.Introduction -- 6.2.A Brief History of NMR and MRI -- 6.3.Nuclear Magnetic Resonance and Diffusion -- 6.4.From Diffusion MRI to Tissue Microstructure -- 6.5.Computational Framework for Processing Diffusion MR Images -- 6.6.Tractography: Inferring the Connectivity -- 6.7.Clinical Applications 6.8.Conclusion -- 6.9.Online Resources -- References -- Part III Modeling in neuroscience -- 7.Single-Trial Analysis of Bioelectromagnetic Signals: The Quest for Hidden Information. M.Clerc, T.Papadopoulo, and C.Bénar -- 7.1.Introduction -- 7.2.Data-driven Approaches: Non-linear Dimensionality Reduction -- 7.3.Model-Driven Approaches: Matching Pursuit and its Extensions -- 7.4.Success Stories -- 7.5.Conclusion -- 7.6.Selected Online Resources -- References -- 8 Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina. B.Cessac and A.Palacios -- 8.1.Introduction -- 8.2.Unraveling the Neural Code in the Retina via Spike Train Statistics Analysis -- 8.3.Spike Train Statistics from a Theoretical Perspective -- 8.4.Using Gibbs Distributions to Analysing Spike Trains Statistics -- 8.5.Conclusion -- 8.6.Outlook -- 8.7.Online Resources -- References -- Biology, Medicine and Biophysics -- Mathematics and Computer Science -- Index.
520 ## - SUMMARY, ETC.
Summary, etc Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines.   Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Bioinformatics.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematical and Computational Biology.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Applications of Mathematics.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computational Biology/Bioinformatics.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Kornprobst, Pierre.
Relator term editor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9783642312076
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://dx.doi.org/10.1007/978-3-642-31208-3
912 ## -
-- ZDB-2-SMA

No items available.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue