Compact Modeling (Record no. 113502)

000 -LEADER
fixed length control field 04754nam a22004095i 4500
001 - CONTROL NUMBER
control field 978-90-481-8614-3
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20140220084601.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 100623s2010 ne | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789048186143
-- 978-90-481-8614-3
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-90-481-8614-3
Source of number or code doi
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK7888.4
072 #7 - SUBJECT CATEGORY CODE
Subject category code TJFC
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code TEC008010
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.3815
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Gildenblat, Gennady.
Relator term editor.
245 10 - TITLE STATEMENT
Title Compact Modeling
Medium [electronic resource] :
Remainder of title Principles, Techniques and Applications /
Statement of responsibility, etc edited by Gennady Gildenblat.
264 #1 -
-- Dordrecht :
-- Springer Netherlands :
-- Imprint: Springer,
-- 2010.
300 ## - PHYSICAL DESCRIPTION
Extent XVII, 527 p. 343 illus., 11 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Compact Models of MOS Transistors -- Surface-Potential-Based Compact Model of Bulk MOSFET -- PSP-SOI: A Surface-Potential-Based Compact Model of SOI MOSFETs -- Benchmark Tests for MOSFET Compact Models -- High-Voltage MOSFET Modeling -- Physics of Noise Performance of Nanoscale Bulk MOS Transistors -- Compact Models of Bipolar Junction Transistors -- to Bipolar Transistor Modeling -- Mextram -- The HiCuM Bipolar Transistor Model -- Compact Models of Passive Devices -- Integrated Resistor Modeling -- The JUNCAP2 Model for Junction Diodes -- Surface-Potential-Based MOS Varactor Model -- Modeling of On-chip RF Passive Components -- Modeling of Multiple Gate MOSFETs -- Multi-Gate MOSFET Compact Model BSIM-MG -- Compact Modeling of Double-Gate and Nanowire MOSFETs -- Statistical Modeling -- Modeling of MOS Matching -- Statistical Modeling Using Backward Propagation of Variance (BPV).
520 ## - SUMMARY, ETC.
Summary, etc Compact Models of circuit elements are models that are sufficiently simple to be incorporated in circuit simulators and are sufficiently accurate to make the outcome of the simulators useful to circuit designers. The conflicting objectives of model simplicity and accuracy make the compact modeling field an exciting and challenging research area for device physicists, modeling engineers and circuit designers. The models of MOS transistors underwent revolutionary change in the last few years and are now based on new principles. The recent models of diodes, passive elements, noise sources and bipolar transistors were developed along the more traditional lines. Following this evolutionary development they became highly sophisticated and much more capable to reflect the increased demands of the advanced integrated circuit technology. The latter depends on the compact models for the shortening of the design cycle and eliminating the elements of overdesign which is often undesirable in today’s competitive environment. At the same time, statistical modeling of semiconductor devices received new significance following the dramatic reduction of the device dimensions and of the power supply voltage. Finally, despite the complexity of the fabrication process, the multi-gate MOS transistors are now seriously considered for the purpose of controlling the small geometry effects. Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models. Compact Modeling also includes chapters on the MOSFET noise theory, benchmarking of MOSFET compact models, modeling of the power MOSFET, and an overview of the bipolar modeling field. It concludes with two chapters describing the variability modeling including some recent developments in the field.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Engineering.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Systems engineering.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Engineering.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Circuits and Systems.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9789048186136
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://dx.doi.org/10.1007/978-90-481-8614-3
912 ## -
-- ZDB-2-ENG

No items available.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue