Turbulent Combustion Modeling (Record no. 109281)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 05232nam a22005175i 4500 |
| 001 - CONTROL NUMBER | |
| control field | 978-94-007-0412-1 |
| 003 - CONTROL NUMBER IDENTIFIER | |
| control field | DE-He213 |
| 005 - DATE AND TIME OF LATEST TRANSACTION | |
| control field | 20140220083829.0 |
| 007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
| fixed length control field | cr nn 008mamaa |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 101221s2011 ne | s |||| 0|eng d |
| 020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
| International Standard Book Number | 9789400704121 |
| -- | 978-94-007-0412-1 |
| 024 7# - OTHER STANDARD IDENTIFIER | |
| Standard number or code | 10.1007/978-94-007-0412-1 |
| Source of number or code | doi |
| 050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
| Classification number | TA357-359 |
| 072 #7 - SUBJECT CATEGORY CODE | |
| Subject category code | TGMF |
| Source | bicssc |
| 072 #7 - SUBJECT CATEGORY CODE | |
| Subject category code | TGMF1 |
| Source | bicssc |
| 072 #7 - SUBJECT CATEGORY CODE | |
| Subject category code | TEC009070 |
| Source | bisacsh |
| 072 #7 - SUBJECT CATEGORY CODE | |
| Subject category code | SCI085000 |
| Source | bisacsh |
| 082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 620.1064 |
| Edition number | 23 |
| 100 1# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Echekki, Tarek. |
| Relator term | editor. |
| 245 10 - TITLE STATEMENT | |
| Title | Turbulent Combustion Modeling |
| Medium | [electronic resource] : |
| Remainder of title | Advances, New Trends and Perspectives / |
| Statement of responsibility, etc | edited by Tarek Echekki, Epaminondas Mastorakos. |
| 264 #1 - | |
| -- | Dordrecht : |
| -- | Springer Netherlands, |
| -- | 2011. |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | XXII, 490 p. |
| Other physical details | online resource. |
| 336 ## - | |
| -- | text |
| -- | txt |
| -- | rdacontent |
| 337 ## - | |
| -- | computer |
| -- | c |
| -- | rdamedia |
| 338 ## - | |
| -- | online resource |
| -- | cr |
| -- | rdacarrier |
| 347 ## - | |
| -- | text file |
| -- | |
| -- | rda |
| 490 1# - SERIES STATEMENT | |
| Series statement | Fluid Mechanics and Its Applications, |
| International Standard Serial Number | 0926-5112 ; |
| Volume number/sequential designation | 95 |
| 505 0# - FORMATTED CONTENTS NOTE | |
| Formatted contents note | Preface -- Table of Contents;List of Contributors -- Part I Introductory Concepts: 1 The Role of Combustion Technology in the 21st Century, by R.W. Bilger -- 2 Turbulent Combustion: Concepts, Governing Equations and Modeling Strategies, by Tarek Echekki and Epaminondas Mastorakos -- Part II Recent Advances and Trends in Turbulent Combustion Models: 3 The Flamelet Approach, by Fabian Mauss -- 4 RANS and LES Modelling of Premixed Turbulent Combustion, by Stewart Cant -- 5 The Conditional Moment Closure Model, by A. Kronenburg and E. Mastorakos -- 6 Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations, by D.C. Haworth and S.B. Pope -- 7 Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion, by M.J. Cleary and A.Y. Klimenko -- Part III Advances and Trends in Multiscale Strategies: 8 The Emerging Role of Multiscale Methods in Turbulent Combustion, by Tarek Echekki -- 9 Timescale Reduction for Chemistry, by Goussis and Maas -- 10 The Linear-Eddy Model, by Suresh Menon and Alan R. Kerstein -- 11 The One-Dimensional Turbulence Model, by Tarek Echekki, Alan R. Kerstein, and James C. Sutherland -- 12 Unsteady Flame Embedding, by Hossam A. El-Asrag and and Ahmed F. Ghoniem -- 13 Adaptive Methods for Simulation of Turbulent Combustion, by John Bell and Marcus Day -- 14 Wavelet methods in computational combustion, by Robert Prosser and R. Stewart Cant -- Part IV Cross-Cutting Science:15 Design of Experiments for Gaining Insights and Validating Modeling of Turbulent Combustion, by A.R. Masri -- 16 Uncertainty Quantification in Fluid Flow, by Habib N. Najm -- 17 Computational Frameworks for Advanced Combustion Simulations, by J. Ray, R. Armstrong, C. Safta, B. J Debusschere, B. A. Allan and H. N. Najm -- 18 The Heterogeneous Multiscale Methods with Application to Combustion, by Weinan E, Bj¨orn Engquist and Yi Sun -- 19 Lattice Boltzmann methods for reactive and other flows, by Christos E. Frouzakis. |
| 520 ## - SUMMARY, ETC. | |
| Summary, etc | Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field. |
| 650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Engineering. |
| 650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Hydraulic engineering. |
| 650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Engineering. |
| 650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Engineering Fluid Dynamics. |
| 650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Fluid- and Aerodynamics. |
| 650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Numerical and Computational Physics. |
| 650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Computational Intelligence. |
| 650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Engineering Thermodynamics, Heat and Mass Transfer. |
| 700 1# - ADDED ENTRY--PERSONAL NAME | |
| Personal name | Mastorakos, Epaminondas. |
| Relator term | editor. |
| 710 2# - ADDED ENTRY--CORPORATE NAME | |
| Corporate name or jurisdiction name as entry element | SpringerLink (Online service) |
| 773 0# - HOST ITEM ENTRY | |
| Title | Springer eBooks |
| 776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
| Display text | Printed edition: |
| International Standard Book Number | 9789400704114 |
| 830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE | |
| Uniform title | Fluid Mechanics and Its Applications, |
| -- | 0926-5112 ; |
| Volume number/sequential designation | 95 |
| 856 40 - ELECTRONIC LOCATION AND ACCESS | |
| Uniform Resource Identifier | http://dx.doi.org/10.1007/978-94-007-0412-1 |
| 912 ## - | |
| -- | ZDB-2-PHA |
No items available.