Eta Products and Theta Series Identities (Record no. 107123)

000 -LEADER
fixed length control field 03977nam a22004575i 4500
001 - CONTROL NUMBER
control field 978-3-642-16152-0
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20140220083748.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 110115s2011 gw | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783642161520
-- 978-3-642-16152-0
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-3-642-16152-0
Source of number or code doi
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA241-247.5
072 #7 - SUBJECT CATEGORY CODE
Subject category code PBH
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT022000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.7
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Köhler, Günter.
Relator term author.
245 10 - TITLE STATEMENT
Title Eta Products and Theta Series Identities
Medium [electronic resource] /
Statement of responsibility, etc by Günter Köhler.
264 #1 -
-- Berlin, Heidelberg :
-- Springer Berlin Heidelberg,
-- 2011.
300 ## - PHYSICAL DESCRIPTION
Extent XXII, 622 p.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement Springer Monographs in Mathematics,
International Standard Serial Number 1439-7382
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Introduction -- Part I: Theoretical background -- 1. Dedekind’s eta function and modular forms -- 2. Eta products -- 3. Eta products and lattice points in simplices -- 4. An algorithm for listing lattice points in a simplex -- 5. Theta series with Hecke character -- 6. Groups of coprime residues in quadratic fields -- Part II: Examples.-7. Ideal numbers for quadratic fields -- 8 Eta products of weight -- 9. Level 1: The full modular group -- 10. The prime level N = 2 -- 11. The prime level N = 3 -- 12. Prime levels N = p ≥ 5 -- 13. Level N = 4 -- 14. Levels N = p2 with primes p ≥ 3 -- 15 Levels N = p3 and p4 for primes p -- 16. Levels N = pq with primes 3 ≤ p < q -- 17. Weight 1 for levels N = 2p with primes p ≥ 5 -- 18. Level N = 6 -- 19. Weight 1 for prime power levels p5 and p6 -- 20. Levels p2q for distinct primes p = 2 and q -- 21. Levels 4p for the primes p = 23 and 19 -- 22. Levels 4p for p = 17 and 13 -- 23. Levels 4p for p = 11 and 7 -- 24. Weight 1 for level N = 20 -- 25. Cuspidal eta products of weight 1 for level 12 -- 26. Non-cuspidal eta products of weight 1 for level 12 -- 27. Weight 1 for Fricke groups Γ∗(q3p) -- 28. Weight 1 for Fricke groups Γ∗(2pq) -- 29. Weight 1 for Fricke groups Γ∗(p2q2) -- 30. Weight 1 for the Fricke groups Γ∗(60) and Γ∗(84) -- 31. Some more levels 4pq with odd primes p _= q -- References -- Directory of Characters -- Index of Notations -- Index.
520 ## - SUMMARY, ETC.
Summary, etc This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere. The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II. In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Number theory.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Algebraic topology.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Number Theory.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Algebraic Topology.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9783642161513
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Springer Monographs in Mathematics,
-- 1439-7382
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://dx.doi.org/10.1007/978-3-642-16152-0
912 ## -
-- ZDB-2-SMA

No items available.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue