Structure Discovery in Natural Language (Record no. 102505)

000 -LEADER
fixed length control field 03612nam a22004935i 4500
001 - CONTROL NUMBER
control field 978-3-642-25923-4
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20140220083307.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 111207s2012 gw | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783642259234
-- 978-3-642-25923-4
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-3-642-25923-4
Source of number or code doi
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q334-342
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TJ210.2-211.495
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYQ
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code TJFM1
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code COM004000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Biemann, Chris.
Relator term author.
245 10 - TITLE STATEMENT
Title Structure Discovery in Natural Language
Medium [electronic resource] /
Statement of responsibility, etc by Chris Biemann.
264 #1 -
-- Berlin, Heidelberg :
-- Springer Berlin Heidelberg,
-- 2012.
300 ## - PHYSICAL DESCRIPTION
Extent XX, 178p.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement Theory and Applications of Natural Language Processing
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Foreword by Antal van den Bosch -- 1.Introduction -- 2.Graph Models -- 3.SmallWorlds of Natural Language -- 4.Graph Clustering -- 5.Unsupervised Language Separation -- 6.Unsupervised Part-of-Speech Tagging -- 7.Word Sense Induction and Disambiguation -- 8.Conclusion -- References .
520 ## - SUMMARY, ETC.
Summary, etc Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into “real-life” applications yet. This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process? After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction. The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.  
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computer science.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Artificial intelligence.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computational linguistics.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computer Science.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Artificial Intelligence (incl. Robotics).
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computational Linguistics.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Graph Theory.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9783642259227
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Theory and Applications of Natural Language Processing
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://dx.doi.org/10.1007/978-3-642-25923-4
912 ## -
-- ZDB-2-SCS

No items available.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue